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SUMMARY

The numerical solution of the time-dependent Navier–Stokes equations in terms of the vorticity and
a stream function is a well tested process to describe two-dimensional incompressible �ows, both for
�uid mixing applications and for studies in theoretical �uid mechanics. In this paper, we consider the
interaction between the unsteady advection–di�usion equation for the vorticity, the Poisson equation
linking vorticity and stream function and the approximation of the boundary vorticity, examining from
a practical viewpoint, global iteration stability and error. Our results show that most schemes have
very similar global stability constraints although there may be small stability gains from the choice of
method to determine boundary vorticity. Concerning accuracy, for one model problem we observe that
there were cases where the boundary vorticity discretization did not propagate to the interior, but for
the usual cavity �ow all the schemes tested had error close to second order. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

While the majority of current �uid �ow calculations are oriented towards three-dimensional
�ow �elds, there remain an important group of simulations of two-dimensional unsteady lami-
nar �ows: either for applications which are approximately two dimensional or for the intrinsic
relevance of two-dimensional �ow to theoretical �uid mechanics, see for instance Reference
[1]. In calculating two-dimensional �ow there are signi�cant advantages in using a stream-
function vorticity formulation of the Navier–Stokes equations rather than a velocity–pressure
formulation: the continuity equation is automatically satis�ed, only one advection equation
has to be solved and there is no di�culty in matching a pressure to the velocity �eld. In
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372 E. SOUSA AND I. J. SOBEY

regular geometries (or irregular geometries using a conformal map) the use of a �nite di�er-
ence scheme to integrate the stream-function vorticity equations is straight forward except for
one important area: the treatment of the boundary vorticity.
The purpose of this paper is to extend studies of the e�ect of di�erent discretization of the

vorticity boundary conditions for the unsteady incompressible Navier–Stokes equations in the
stream-function vorticity formulation. We are especially interested in understanding the global
stability properties of explicit time marching schemes using various methods for dealing with
the spatially implicit vorticity boundary condition, although in principle, our methods could
be applied to implicit time marching schemes. With this purpose we build a matrix form
for the system of equations which couples together the advection–di�usion equation for the
vorticity, the Poisson equation for the stream function and the vorticity boundary condition
to provide a global iteration matrix; we then study the properties of that matrix for two par-
ticular �ows. While stability is the primary focus of this work we also note in passing some
results on accuracy which are in accordance with existing results although with some new
data.
There are many studies of the stream function vorticity formulation for the Navier–Stokes

equations and a substantial literature on the subject, from the seminal work of Thom [2]
through to texts on computational �uid mechanics, ranging from the early text Reference [3]
to the more recent Reference [4]. The basic method is also reviewed in References [5, 6].
The way vorticity is handled at a boundary is extremely important from a physical point

of view as it re�ects the mechanism of vorticity generation at a boundary. The di�culty
with a vorticity formulation is the lack of natural boundary condition on the vorticity since
a no-slip boundary condition does not have a simple counterpart in terms of the vorticity.
In order to complete the discrete formulation is nevertheless necessary to impose a numer-
ical boundary condition on the vorticity. Perhaps the most well-known numerical vorticity
boundary condition is that given by Thom [2] which comes from a quadratic polynomial
approximation of the stream function near a boundary. The approximation is constrained to
satisfy the correct normal derivative and then applied at the �rst interior point from the bound-
ary. This type of numerical boundary condition has been analysed by Hou and Wetton [7],
associated with a central scheme for the vorticity equation, and shown to yield second-order
accurate solutions. Furthermore, Weinan and Liu [8] analysed fourth-order schemes associ-
ated to Briley’s vorticity boundary condition leading to fourth-order accurate solutions. Later
Wang and Liu [9] studied the Wilkes–Pearson formula associated with the central di�erences
and a fourth-order scheme with Briley’s formula. Other work that has focused on the role
of vorticity boundary conditions is in for example: References [10] or [11]. More recently,
Li and Wang [12] have generalized vorticity boundary conditions to curved boundary do-
mains. There is also signi�cant work on steady solutions and particularly their accuracy in
Reference [13].
The plan of this paper is to brie�y recap the formulation of the global iteration matrix for the

Navier–Stokes equations (the idea was �rst explored in Reference [14] for a one-dimensional
analogue of the stream-function vorticity equations), to consider a number of well-known
discretizations (of both the vorticity transport equation and the boundary vorticity) and then
to consider two cavity type �ows. One is an exact solution of the Navier–Stokes equations and
the other is a cavity �ow driven by one wall moving uniformly. In each case we examine the
variation of the solution with numerical parameters and the stability of explicit �nite di�erence
schemes for these �ows.
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EFFECT OF BOUNDARY VORTICITY DISCRETIZATION 373

2. GLOBAL ITERATION MATRIX FORMULATION

In this section, we derive a global iteration matrix for the discretized form of the advection–
di�usion equation, the Poisson equation between the stream function and the vorticity and the
boundary vorticity method, also considering brie�y some conditions for stability of the global
iteration.

2.1. Flow equations

We consider incompressible viscous �ow in a two-dimensional domain without in�ow or
out�ow. The motion of the �uid is governed by the Navier–Stokes equations,

@u
@t
+ (u · ∇)u=−∇p+

1
Re

∇2u

∇ · u=0
(1)

where u= u(x; y; t)= (u(x; y; t); v(x; y; t)) is a non-dimensional velocity �eld, p=p(x; y; t) is
a non-dimensional pressure, and Re is a Reynolds number. In a bounded domain � enclosed
by a boundary @�, the impermeability of the boundaries and the no-slip condition implies
that

u(x; y; t)= uW (x; y; t) for (x; y) ∈ @�; t¿0 (2)

where uW denotes the boundary velocity.
In terms of the vorticity �eld != vx − uy, the momentum equations provide a vorticity

equation,

@!
@t
+ u

@!
@x
+ v

@!
@y
=
1
Re

∇2! (3)

The �uid velocity, u=(u; v) is obtained from

u=
@ 
@y

; v= − @ 
@x

(4)

where  (x; y; t) is a stream function, which is connected to the vorticity !, by a Poisson
equation

!= − ∇2 (5)

where without in�ow or out�ow in the cavity �ows we consider, the stream function is zero
on the boundary,  |@� =0. The boundary conditions (2) translate into boundary conditions for
the stream function (

@ 
@y

;−@ 
@x

)
= uW (x; y; t); (x; y) ∈ @� (6)

There is no explicit boundary condition for the vorticity.
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2.2. Matrix form of discretization

The idea of the matrix formulation was initially introduced in Reference [14] for a one-
dimensional model problem which was similar to a stream-function vorticity problem and so
included some of the features of that problem but in other respects was considerably simpler,
having only two boundary points. In two dimensions we have a more complex problem for
various reasons, one of them being the fact that we have a considerably larger number of
points on the boundary.
As we have noted, the stream-function vorticity formulation has the advantage that it not

only eliminates the pressure variable, but also automatically enforces incompressibility. Yet,
a di�culty in the numerical simulation of (3)–(6) is deciding a suitable numerical boundary
condition for the vorticity. When the vorticity advection–di�usion equation is updated in time,
that does not provide values for the vorticity on the boundaries, only at mesh points in the
interior of � so that an additional condition is needed to determine the vorticity on the
boundary.
We will describe how the problem (3)–(6) is implemented in matrix form. We assume

that we are in a cavity, with �= [0; 1]× [0; 1] but these ideas generalise straight forwardly to
arbitrary domains and to more complicated �ows with inlet and outlet conditions.
We start by writing the discretized vorticity values in two vectors, WI, containing points

which lie in the interior and WB containing points on the boundary. The discrete values of
the stream function are similarly contained in �I, for the interior and �B for the boundary. A
time update of the vorticity advection–di�usion equation provides an update for the interior
vorticity values only. A fairly broad class of time marching discretization for the vorticity
advection equation, (3), can be written in the form

QWn+1
I =AWn

I + BW
n
B (7)

for suitable matrices Q, A and B. Note that this formulation hides some aspects of the
Navier–Stokes equations since according to (4), the matrices A and B are both functions of
the stream function, and thus implicitly of the vorticity. Equation (7), covers some implicit
and all explicit time marching schemes. For these cavity problems, assume there is uniform
discretization where the space step is the same in both directions, namely h, and that the
mesh points are

{(jh; kh) : j; k=0; : : : ; m}
Thus the vector WI holds (m− 1)2 values and the vector WB has 4m values. The dimensions
of the matrices Q and A are (m − 1)2 × (m − 1)2 and of the matrix B are (m − 1)2 × 4m.
For a driven cavity �ow, the natural ordering of the stream-function values implies an

ordering of values  jk =  (jh; kh); j; k=0; : : : ; m with h=1=m. Suppose we denote a vector
of values �jk which approximate  jk using this natural ordering

�=[�00;�10;�20; : : : ;�mm]T (8)

then there will exist a permutation matrix P such that

�=P

[
�B

�I

]
(9)
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where �B are values on the boundary (j or k equal to 0 or m, in this case 4m values), �I

those values in the interior (0¡j; k¡m, in this case (m − 1)2 values) and if P is suitable
partitioned as P=[P1;P2] then

�=P1�B + P2�I (10)

where the matrix P1 is a (m+ 1)2 × 4m matrix and P2 is a (m+ 1)2 × (m − 1)2 matrix.
In a similar manner the vorticity approximation Wjk , can be written (using the same

permutation matrices)

W=[W00; W10; W20; : : : ; Wmm]T =P1WB + P2WI (11)

Next, the stream function vorticity Poisson equation can be discretized at the interior points
by

R�= − h2WI (12)

where R is a matrix of dimension (m− 1)2 × (m+1)2 and is easy to write down in terms of
the natural ordering of �, so that in Equation (12)

1
h2
L�n+1

I +
1
h2
N�n+1

B = −Wn+1
I (13)

L=RP2 and N=RP1 (14)

and L is a (m − 1)2 × (m − 1)2 and N is an (m − 1)2 × 4m matrix.
If the vorticity equation is discretized at the interior points (again using the natural ordering

of �n),

QWn+1
I =GWn=G[P1Wn

B + P2W
n
I ] (15)

where G is a matrix of dimensions (m − 1)2 × (m+ 1)2. Then
QWn+1

I =GP1Wn
B +GP2W

n
I (16)

so that the matrix A and B in (7) are determined by

A=GP2 and B=GP1 (17)

The boundary vorticity is more complicated, since the discretization there relates the wall
vorticity to the updates stream function, but if we use a natural ordering to obtain on the
boundary

D1Wn+1 =
1
h2
D2�

n+1 + vn+1 (18)

where D1 and D2 are 4m× (m+ 1)2 matrices. The vector vn+1 might for instance arise in a
driven cavity problem where the walls are moving. It follows that

D1[P1Wn+1
B + P2Wn+1

I ]=
1
h2
D2[P1�

n+1
B + P2�

n+1
I ] + vn+1 (19)

and so

D1P1Wn+1
B =

1
h2
D2P1�

n+1
B +

1
h2
D2P2�

n+1
I −D1P2Wn+1

I + vn+1 (20)
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This can be rewritten

Wn+1
B =

1
h2
M�n+1

I + FWn+1
I +

1
h2
J�n+1

B + (D1P1)−1vn+1 (21)

where the matrices M, F and J are of dimensions 4m× (m − 1)2 and given by
M=(D1P1)−1D2P2; F= − (D1P1)−1D1P2; J=(D1P1)−1D2P1 (22)

This enables the stream function to be eliminated in the interior using (13)

Wn+1
B = (F−ML−1)Wn+1

I +
1
h2
(J −ML−1N)�n+1

B + (D1P1)−1vn+1 (23)

and then the update of the vorticity in the interior can be replaced so that

Wn+1
B = (F−ML−1)Q−1(AWn

I + BW
n
B) +

1
h2
(J −ML−1N)�n+1

B + (D1P1)−1vn+1 (24)

This essentially completes the derivation of the iteration matrix for this version of the
Navier–Stokes equations, since we now have[

Wn+1
I

Wn+1
B

]
=

[
Q−1A Q−1B

(F−ML−1)Q−1A (F−ML−1)Q−1B

] [
Wn
I

Wn
B

]
+ Sn+1 (25)

or

Wn+1 =KWn + Sn+1 (26)

where

Sn+1 =
1
h2

[
0

(J −ML−1N)�n+1
B

]
+ (D1P1)−1vn+1

and K denotes the overall iteration matrix,

K=

[
Q−1A Q−1B

(F−ML−1)Q−1A (F−ML−1)Q−1B

]
(27)

Let X=F−ML−1, p=(m − 1)2 and q=4m. We have

K(p+q)2 =

[
Q−1Ap×p Q−1Bp×q

XQ−1Aq×p XQ−1Bq×q

]

and we can observe that

K=

[
Ip×p 0p×q

Xq×p Iq×q

] [
Q−1

p×p 0p×q

0q×p Iq×q

] [
Ap×p Bp×q

0q×p 0q×q

]
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Note that if we have an explicit scheme then Q= I so that

K=

[
I 0

X I

] [
A B

0 0

]
(28)

and X represents the in�uence of the vorticity boundary conditions and Poisson’s equation
and A and B the in�uence of the vorticity equation.
In this work, we consider two-level time-integration schemes and constant boundary

conditions so that Sn+1 =S, is constant and so,

Wn+1 =KnWn + S (29)

where S contains boundary values of the stream function and of the velocity �eld and in the
case where the �ow �eld is evolving or time dependent since then the global iteration matrix
varies from iteration to iteration and so is denoted Kn.
In Section 4, we consider a case where Kn is constant, Kn=K. Since the �ow �eld is

constant and known in advance,

Wn+1 =KWn + S (30)

For such a steady �ow, we can denote the di�erence between the steady solution, W and
the current iteration value, Wn as an error, en=W −Wn.
In that case the error en satis�es the equation

en+1 =Ken=Kn+1e0 (31)

When K is constant, we have the following stability condition, see Reference [15].

Stability condition: In order for Wn to remain bounded and the scheme, de�ned by the
operator Kn+1, to remain stable, the in�nite set of operators Kn has to be uniformly bounded.
That is, we should have, in a selected norm, for �nite T

‖Kn‖¡C for 0¡n�t¡T

where C is independent of n;�t; h.
The norm of Kn is often very di�cult to analyse, and instead a necessary condition but

not always su�cient condition can be obtained from an analysis of the eigenvalues of K.
The condition �(K)61 is necessary for the scheme implemented by (30) to be stable,

where �(K) is the spectral radius of K.
We have the following result.

Proposition 1
The value � �= 0 is an eigenvalue of the matrix K, de�ned by (28), if and only if is an
eigenvalue of the matrix A+ BX.

Proof
If � �=0 is an eigenvalue of the matrix K then exists z such that Kz= �z. From this, we
get Az1 +Bz2= �z1 and XAz1 +XBz2= �z2, where z=[z1 z2]T. We have Xz1= z2 and then
Az1 + BXz1= �z1 and � is an eigenvalue of A+ BX.
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Reciprocally if � is an eigenvalue of A+BX then there is z1 such that Az1 +BXz1= �z1.
Therefore, � is an eigenvalue of K, since we have Kz= �z, where z=[z1 Xz1]T.

We cannot easily get explicit conditions between the eigenvalues of A and the eigenvalues
of A+BX, since neither A or BX are special matrices, namely symmetric or other. However,
the fact that the eigenvalues of K are the eigenvalues of A+BX shows us more clearly that
the di�erent choices of the vorticity boundary conditions, implicitly represented by X, can
a�ect the spectral radius of K.
Also if we want to compute numerically the spectrum of K for large dimensions is more

e�cient to use the matrix A+ BX.
In later sections we are also going to use a fourth-order Poisson discretization. Brie�y, we

point out the changes that occurs in the matrix formulation when using this discretization.
Formula (13) come as

1
h2
L�n+1

I +
1
h2
N�n+1

B = − T1Wn+1
I − T2Wn

B (32)

and then

�n+1
I = − L−1N�n+1

B − h2L−1T1Wn+1
I − h2L−1T2Wn

B (33)

Consequently, (23) is now given by

Wn+1
B = (F−ML−1T1)Wn+1

I −ML−1T2Wn
B +

1
h2
(J −ML−1N)�n+1

B + (D1P1)−1vn+1 (34)

and then

Wn+1
B = [(F−ML−1T1)Q−1A (F−ML−1T1)Q−1B−ML−1T2]

[
Wn
I

Wn
B

]
+ Sn+1 (35)

3. FINITE DIFFERENCE DISCRETIZATIONS

In this section, we set out two di�erent schemes for the unsteady vorticity advection–di�usion
equation; one a second-order Lax–Wendro� type scheme and one a third order, Quickest type
scheme. These schemes, which are forms of well-known schemes of the same name, were
introduced in Reference [16]. We consider two schemes for discretizing a Poisson equation,
one the usual second-order central di�erence scheme and one a fourth-order scheme (see Ref-
erence [17]). We also set out a number of well-known schemes for discretizing the boundary
vorticity, that of References [2, 18–21]. We note in passing some consequences for stability
from the discretization of the advection–di�usion equation.

3.1. Discretization of the vorticity advection–di�usion equation

We use the di�erence operators,

�x0Wj;k = 1
2 (Wj+1; k − Wj−1; k)
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�2xWj; k =Wj+1; k − 2Wj;k +Wj−1; k

�x−Wj;k =Wj;k − Wj−1; k

with operators �y0Wj;k ; �2yWj; k ;�y−Wj;k de�ned analogously.
Also de�ne local numerical parameters,

�x=
u�t
h

; �y=
v�t
h

; �=
1
Re
�t
h2

where �t is the time-step so that the iteration time is tn= n�t.
We discretize the vorticity advection–di�usion equation (3) on the (m−1)× (m−1) interior

points using two di�erent numerical schemes.
An explicit second-order numerical Lax–Wendro� type scheme is given by

Wn+1
jk =Wn

jk − �x�x0Wn
jk +

(
1
2 �

2
x + �

)
�2xW

n
jk − �y�y0Wn

jk

+(12�
2
y + �)�2yW

n
jk + �x�y�x0�y0Wn

jk ; j; k=1; : : : ; m − 1 (36)

This scheme uses a nine point stencil and can be used independently of the direction of the
velocity �eld (u; v).
An explicit third-order Quickest type scheme is given by

Wn+1
jk =Wn

jk − �x�x0Wn
jk − �y�y0Wn

jk + (
1
2 �

2
x + �)�2xW

n
jk

+(12 �
2
y + �)�2yW

n
jk + �x�y�x0�y0Wn

jk

+1
6 �x(1− �2x − 6�)��xW n

jk +
1
6 �y(1− �2y − 6�)��yW n

jk

−�y(�+ 1
2�
2
x)�

2
x�y0Wn

jk − �x(�+ 1
2�
2
y)�

2
y�x0Wn

jk j; k=1; : : : ; m − 1 (37)

where the operators ��x and ��y change according to the direction of the velocity �eld as
described in Table I. This scheme uses a 11 point stencil.
In the case of a non-linear velocity �eld, we treat these di�erence expansions as local

approximations and use the velocity components (u; v) involved in the variables �x and �y
at the central mesh point, (xj; yk). For additional information on the derivation of these two
schemes see Reference [16].

Table I. De�nition of the operators ��x and ��y.

u; v¿0 u¿0; v60 u60; v¿0 u; v60

��x �2x�x− �2x�x− �2x�x+ �2x�x+

��y �2y�y− �2y�y+ �2y�y− �2y�y+
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If we retain the locally constant approximation then the stability of the iteration is from
a linear problem and we can use von Neumann stability analysis for the Cauchy problem
involving the advection–di�usion vorticity equation. Although we apply the von Neumann
analysis to the schemes above assuming the coe�cients are linear, the conditions obtained
are at least necessary stability conditions for the non-linear problem. For this reason it is
worthwhile to take it into consideration.
A von Neumann analysis in two dimensions for linear problems is a straightforward gener-

alization of the one-dimensional case. The discrete Fourier decomposition in two-dimensions
consists of the decomposition of the function into a Fourier series as

Un
jk =

∑
�x; �y

�nei�xj�xei�yk�y

where the range �x, �y is de�ned separately for each direction, as in the one-dimensional case.
The ampli�cation factor is given by �. The products �x�x and �y�y are often represented as
a phase angle, namely, �x= �x�x; �y= �y�y. To obtain a von Neumann stability condition
we insert the singular component �neij�xeik�y into the discretized scheme. The ampli�cation
factor is said to satisfy the von Neumann condition if there is a constant K such that

|�(�x; �y)|61 + K�t ∀�x; �y ∈ [0; 2	] (38)

As in the one-dimensional case, in practice we use the stronger condition

|�(�x; �y)|61 ∀�x; �y ∈ [0; 2	] (39)

and the discrete scheme that meets this condition, we refer to as von Neumann stable. This has
been called practical stability by Richtmyer and Morton [15] or strict stability by other authors.
In some cases condition (38) allows numerical modes to grow exponentially in time for
�nite values of �t. Therefore, the practical, or strict, stability condition (39) is recommended
in order to prevent numerical modes from growing faster than the physical modes of the
di�erential equation.
For our �nite di�erence schemes we have the following results, that are also represented

in Figures 1 and 2.

Proposition 2
For the hyperbolic problem, that is, �=0, we have:

(a) Scheme (36) is stable if and only if

|�x|2=3 + |�y|2=361 (40)

(b) Scheme (37) is stable only if

|�x|+ |�y|61 (41)

Proof

(a) This is well known, see Reference [22].
(b) Let u; v¿0 so that �x; �y¿0. The ampli�cation factor for the phase angles �x=0 and

�y=	 gives that to have |�|61 is the same as to have �x61. Similarly for the phase an-
gles �x=	 and �y=0, we have �y61.Then assuming �x; �y61 for the phase angles of high
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Figure 1. Stability conditions given in Proposition 2: (a) second-order
scheme; and (b) third-order scheme.
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Figure 2. Stability conditions given in Proposition 3: (a) second-order scheme: contours for
�=0:05 (−); �=0:1 (−·−); �=0:2 (···); �=0:24 (−−); and (b) third-order scheme: contours for

�=0:1 (− · −); �=0:2 (· · ·); �=0:24 (−−).

frequency �x= �y=	, |�|61 is equivalent to �x + �y61. Similarly results could be obtained
for di�erent directions of the velocity �eld in order to obtain condition (41).

Proposition 3

(a) Necessary von Neumann conditions for the stability of scheme (36) are

4�61; �2x + �2y61− 4�
(b) A necessary von Neumann condition for the stability of scheme (37) is

(�2x + 2�) + (�
2
y + 2�) +

2
3 |�x|(1− �2x − 6�) + 2

3 |�y|(1− �2y − 6�)61
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Proof

(a) The �rst condition is obtained in the limiting case �x → 0, �y → 0. The second condition
is obtained from the particular case �x= �y=	.

(b) Let u; v¿0 so that �x; �y¿0. The second condition is obtained from the particular case
�x= �y=	.

3.2. Discretization of the Poisson equation

We consider two discretizations of the Poisson equation, (5). The �rst is the usual second-
order central di�erence scheme,

(�2x + �2y)�
n+1
j; k = − h2Wn+1

j; k (42)

The second discretization was originated by Collatz [23], see also Reference [17],

(�2x + �2y +
1
6 �

2
x�
2
y)�

n+1
j; k = − h2

(
I + 1

12 (�
2
x + �2y)

)
Wn+1

j; k (43)

where I is an identity operator. This scheme is fourth-order accurate in h. We believe that
this scheme is the same as that advocated in Reference [13] who derived the scheme afresh
using discrete approximation for high-order derivatives in the truncation error.

3.3. Boundary vorticity discretization

While there are no formal or explicit conditions on the vorticity at a wall, it is necessary to use
an implicit condition in order to provide the vorticity at the wall. There are various di�erent
methods for specifying wall vorticity, WB, in terms of the vorticity in the interior and the
stream function. An extensive review of methods for dealing with the boundary vorticity can
be found in Reference [11]. In terms of our matrix formulation, di�erent boundary vorticity
schemes imply changes only in the matrices D1;D2.
The conditions we use to calculate the vorticity on the boundaries are illustrated for one

boundary, y=0. Since the velocity �eld on that boundary, u(x; 0), is not zero, the formulae
assume that  y= u implicitly on the boundary. The formulae below are due to Thom [2],
Woods [18], Jensen [19], d’Alessio and Dennis [20] and Briley [21].

Thom: Wj0 =
2
h2
(�j0 −�j1 + hu(jh; 0)) (44)

Woods: Wj0 =
3
h2
(�j0 −�j1 + hu(jh; 0))− 1

2
Wj1 (45)

Jensen: Wj0 =
1
2h2

(7�j0 − 8�j;1 + �j2 + 6hu(jh; 0)) (46)

D’Alessio and Dennis: Wj0 =
4
h2
(�j0 −�j1 + hu(jh; 0))− 1

3
(4Wj1 − Wj2) (47)

Briley: Wj0 =
1
18h2

(85�j;0−108�j;1+27�j;2−4�j;3+66hu(jh; 0)) (48)
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We omit the superscript n+1 de�ning the time, tn+1, in formulas (44)–(48), all the variables
are taken at the updated time level, tn+1. The discretization for the other boundaries is analo-
gous. Considering (18) we have for Thom’s vorticity boundary condition that D1 = I where I
is the matrix identity and D2 depends on the values of � at the boundary discretization. For
Woods’ and d’Allesio and Dennis’ boundary condition D1 is no longer an identity matrix.
Also for Thom’s, Jensen’s and Briley’s formulae, F= 0, since they do not depend on the
interior vorticity values. The order of accuracy of the various methods (see Reference [11])
is O(h) for Thom’s, O(h2) for Woods’, Jensen’s and d’Alessio and Dennis’ and O(h3) for
Briley’s.

4. CAVITY FLOW WHICH IS EXACT SOLUTION OF NAVIER–STOKES
EQUATIONS

In this section, we approach the problem of using the global iteration matrix by turning to an
exact solution of the Navier–Stokes equations. The solution is somewhat contrived in that it
relies on a body force which may not be attainable in reality but it is, nevertheless, an exact
solution. This allows consideration of precisely de�ned error measures, whereas normally in
dealing with �ow problems, one can only test against solutions obtained from re�ned meshes.
We start from the stream function

 (x; y)=
1
	
sin 	x sin 	y (49)

which will take constant (zero) value on the boundaries of the unit square and so in one
sense can be described as a driven cavity problem. This stream-function describes a �ow with
velocity �eld u=(u; v)

u(x; y) = sin 	x cos 	y (50)

v(x; y) =− cos 	x sin 	y (51)

and vorticity

!= − ∇2 =2	 sin 	x sin 	y (52)

In order to make this an exact solution, consider the momentum equation in the Navier–Stokes
equations, (1), with the addition of a body force, f ,

@u
@t
+ (u · ∇)u= − ∇p+

1
Re

∇2u+ f (53)

and choose

p= 1
4 (cos 2	x + cos 2	y) (54)

f =
2	2

Re
[sin 	x cos 	y;− cos 	x sin 	y] (55)

The set  , p and f provide an exact solution to the steady Navier–Stokes equations.
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The problem we consider is to suppose that we have some distribution of vorticity W (x; y; t)
and stream function, �(x; y; t) related by

∇2�= − W (56)

but subject to the steady velocity �eld u and body force f through the vorticity advection
equation which results from (53). The time dependent Navier–Stokes equations will give
W → ! as t → ∞ and we let W satisfy:

@W
@t
+ (u · ∇)W =

1
Re

∇2W − 1
Re

∇2! (57)

Now use the result that for this exact steady �ow �eld

@!
@t

≡ 0 (u · ∇)!≡ 0 (58)

so that the di�erence, e=W − !, satis�es

@e
@t
+ (u · ∇)e= 1

Re
∇2e (59)

We interpret e as an error in a vorticity �eld, the error satisfying an advection–di�usion
equation with a velocity �eld which is spatially varying but constant in time. If the vorticity
time variation on the boundary is set to zero, then the vorticity error will decay to zero in
time as W → ! and properties of the discretization of the advection–di�usion equation alone
should determine the vorticity time variation behaviour in time. If, however, the boundary
vorticity is not speci�ed explicitly, but determined as usual for the stream-function vorticity
formulation, then the error will not decay to zero in time but will re�ect a global truncation
error of the discretization of the whole stream-function vorticity system. Hence, the procedure
to carry out one time step is: (a) update the error e in the interior of the domain using
(59), (b) calculate W in the interior from W = e+!, (c) calculate the stream function, � in
the interior by solving ∇2�= − W , (d) calculate the vorticity W on the boundary using an
appropriate method, and �nally (e) calculate the error on the boundary using e=W − !.
There are two numerical parameters which characterize the system,

�=
�t
h

; �=
1
Re
�t
h2

4.1. Stability

We consider consequences for stability of choosing di�erent boundary vorticity conditions.
Since the vorticity di�erence, e, satis�es an advection–di�usion equation with constant velocity
�eld we can examine stability through the global iteration matrix, K, de�ned in (27), where
we used the second-order Poisson’s discretization.
The results for the eigenvalues of K for di�erent vorticity boundary conditions with the

second-order Lax–Wendro� type scheme are shown in Figure 3 where we also show the
eigenvalues of the iteration matrix for the advection–di�usion equation, A, The results were
obtained for the mesh size m=32. The overall pattern is that there may be a small reduction
in the region of stability with higher order methods but in general, the choice of boundary
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Figure 3. Eigenvalues less than one: the local matrix A (·−); the global matrix K (–);
m=32. Second-order method for advection–di�usion with: (a) Thom’s boundary con-
dition; (b) Woods’s boundary condition; (c) Jensen boundary condition; (d) Alessio’s

boundary condition; and (e) Briley’s boundary condition.

vorticity discretization does not have signi�cant stability penalties. Mesh re�nement does not
a�ect this conclusion.
We have also considered the case of a third-order Quickest type scheme for the advection–

di�usion equation and the regions of stability are shown in Figure 4. In this case there is a
more noticeable stability penalty but again, only marginally important. There is a region near
the �=0 axis where the eigenvalues are predicted to be very slightly greater than one but in
practical computations, the iterations remain stable in this region.
Although Figures 3 and 4 display the stability regions obtained when using the second-

order Poisson’s discretization, for the fourth-order Poisson discretization (43) we obtain very
similar stability regions.

4.2. Accuracy

We have used solution of system (56) and (59) to examine the accuracy of the di�erent
numerical schemes although as we shall see in the next section, the conclusions are more
limited than we had hoped.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:371–393



386 E. SOUSA AND I. J. SOBEY

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

µ
0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.5

1

1.5

µ
0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.5

1

1.5

µ

 

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

µ
0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.5

1

1.5

µ

ν

ν ν

ν ν

(a) (b) (c)

(d) (e)

Figure 4. Eigenvalues less than one: the local matrix A (·−); the global matrix K
(–); m=32. Third-order method for advection–di�usion with: (a) Thom’s boundary con-
dition; (b) Wood’s boundary condition; (c) Jensen boundary condition; (d) Alessio’s

boundary condition; and (e) Briley’s boundary condition.

We start the iteration with the vorticity initially set to have unit value everywhere except
at the four corner nodes where it is set to zero (the corner values of the vorticity are not used
anywhere in the iteration). The system is then updated according to the scheme described
above with the following possible choices:

(i) Lax–Wendro� or Quickest for advection–di�usion equation,
(ii) a second- or fourth-order scheme for solution of the Poisson equation,
(iii) boundary vorticity scheme from: Thom, Woods, Jensen, d’Allessio and Dennis or

Briley.

The Poisson equation was solved using a four-level multigrid solver with convergence
criterion set to L∞ norm of the residual less than 10−7. As the global error is converging
to zero as the mesh size vanishes, the order of convergence can be extrapolated using two
meshes. In the results we do this for 16× 16 and 32× 32 meshes and for 32× 32 and 64× 64
meshes.
The results shown in Table II are a little surprising since for the majority of cases second-

order convergence is obtained regardless of the discretization of the vorticity equation or which
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form of boundary condition is used, however, in the case of Jensen or Briley’s method, fourth-
order convergence is obtained when the Poisson solver is also fourth order. We believe that
this is consistent with the theory of Bramble and Hubbard [24] who showed that for an
elliptic problem with truncation error O(hn) [h is mesh spacing] then the global error would
remain O(hn) when there were local errors of order O(hn−1) near a boundary with a mixed or
Neumann condition and O(hn−2) near a boundary with Dirichlet condition. The complexity of
this particular problem means that we cannot prove this result formally at present. It is also
surprising that the discretization of the vorticity equation does not a�ect the numerical results
but that too may be consistent with the theory of Bramble and Hubbard [24] or it may be a
consequence of the very arti�cial nature of this test problem. Since in the next section where
we consider a driven cavity �ow, we do not see this behaviour, it is most likely that the
convergence here is determined more by the solution of Poisson equation than by the solution
of the advection–di�usion equation so that the correct explanation for the global convergence
rate comes from Bramble–Hubbard theory.

Table II. Global L2 error of time converged solution for three mesh resolutions, 16× 16, 32× 32
and 64× 64, with calculated convergence rate for varying vorticity boundary condition, convec-

tion–di�usion discretization and discretization of stream function-vorticity equation.

Error Convergence
Boundary Poisson
method Convection–di�usion equation 16× 16 32× 32 64× 64 16–32 32–64

Thom Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

0:914E-02
0:181E-01
0:909E-02
0:180E-01

0:222E-02
0:443E-02
0:222E-02
0:443E-02

0:546E-03
0:109E-02
0:546E-03
0:109E-02

2:04
2:03
2:03
2:02

2:02
2:02
2:02
2:02

Woods Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

0:278E-01
0:183E-01
0:275E-01
0:181E-01

0:668E-02
0:444E-02
0:667E-02
0:444E-02

0:164E-02
0:109E-02
0:164E-02
0:109E-02

2:06
2:04
2:04
2:03

2:03
2:02
2:02
2:02

Jensen Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

0:925E-02
0:154E-03
0:915E-02
0:153E-03

0:223E-02
0:930E-05
0:222E-02
0:930E-05

0:546E-03
0:571E-06
0:546E-03
0:571E-06

2:06
4:05
2:04
4:04

2:03
4:03
2:03
4:03

d’Allesio Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

0:686E-01
0:611E-01
0:653E-01
0:582E-01

0:137E-01
0:123E-01
0:136E-01
0:122E-01

0:319E-02
0:284E-02
0:318E-02
0:283E-02

2:32
2:31
2:26
2:26

2:11
2:11
2:10
2:10

Briley Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

0:961E-02
0:103E-03
0:947E-02
0:102E-03

0:224E-02
0:628E-05
0:224E-02
0:627E-05

0:547E-03
0:387E-06
0:547E-03
0:387E-06

2:10
4:04
2:08
4:02

2:04
4:02
2:03
4:02

Numerical parameters are: Re = 100, �t = 0:0005, multigrid residual less than 10−7.
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5. DRIVEN CAVITY LAMINAR FLOW

In this section, we consider time marching solutions for a full Navier–Stokes problem using
the range of discretizations just described and present stability regions and some numerical
results for accuracy. This problem has long served as the prototype for the incompressible
Navier–Stokes equations; see, References [7, 25–27], to mention only a few.
We assume u=0 and v=0 on all the �xed walls and that on the moving wall at y=1,

u=1 and v=0. These boundary conditions can be written in terms of the stream function as

 =0

on all boundaries and

@ 
@n
= 


where 
=0 on �xed walls and 
=1 on the moving wall at y=1. The coordinate n is normal
to the surface.

5.1. Stability

In the driven cavity problem, energy is provided to the system through forces acting on the
moving wall and this energy is dissipated by viscous action, becoming heat which will be lost
through the cavity walls. The driven cavity does not show stability for a Reynolds number
larger than 7500, instead there is bounded oscillations of the energy even for very small
time-steps. We have not analysed the nature of this oscillation, although the reasons may be
associated with the dynamical features of the physical problem as reported in the literature
for the driven cavity in References [27–29], where other numerical schemes were used.
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Figure 5. Unstable region for Re=350 [above the curves]: eigenvalues larger than one: (a) for the sec-
ond-order method; (b) for the third-order method. Thom’s boundary condition (−); Alessio’s boundary
condition (− · −); Wood’s and Briley’s boundary condition (· · ·); Jensen’s boundary condition (−−).
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Table III. Calculation of wall vorticity midway along moving wall, !(0:5; 1), for four mesh resolu-
tions together with extrapolated convergence rate for varying vorticity boundary condition, convec-

tion–di�usion and stream function-vorticity equation discretization.

!(0:5; 1) reference = 6:564094 Convergence

!|@� u · ∇! ∇2 = −! 32× 32 64× 64 128× 128 256× 256 32–64 64–128 128–256

Thom Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

6:990319
6:973841
6:856680
6:838890

6:659525
6:650393
6:630311
6:620976

6:585685
6:582504
6:581038
6:577831

6:569531
6:568800
6:568237
6:567307

2:16
2:25
2:14
2:27

2:14
2:23
1:97
2:05

1:99
1:97
2:03
2:10

Woods Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

6:856138
6:833118
6:727854
6:703616

6:636151
6:626328
6:607491
6:597450

6:581579
6:578337
6:576985
6:573714

6:568751
6:568015
6:567460
6:566524

2:02
2:11
1:92
2:06

2:04
2:13
1:75
1:79

1:91
1:86
1:94
1:98

Jensen Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

6:851832
6:831085
6:724270
6:701177

6:635290
6:624681
6:606717
6:595836

6:581445
6:577995
6:576860
6:573376

6:568735
6:567962
6:567444
6:566472

2:01
2:14
1:91
2:11

2:04
2:12
1:74
1:77

1:90
1:85
1:93
1:96

d’Allesio Lax–Wendro�Quickest

O(h2)
O(h4)
O(h2)
O(h4)

6:915013
6:889537
6:780886
6:754719

6:665129
6:655285
6:635431
6:625346

6:592959
6:589724
6:588223
6:584954

6:573593
6:572859
6:572284
6:571350

1:80
1:84
1:60
1:64

1:81
1:83
1:56
1:55

1:60
1:55
1:56
1:52

Briley Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

6:846822
6:823843
6:721911
6:696143

6:638982
6:627732
6:610509
6:598940

6:582381
6:578811
6:577795
6:574191

6:568893
6:567906
6:567601
6:566612

1:92
2:03
1:77
1:92

2:03
2:11
1:76
1:79

1:93
1:95
1:97
2:00

The reference value given by Botella and Peyret [30] is !(0:5; 1)=6:564094. Numerical parameters are: Re=100,
�t=0:0005, multigrid residual less than 10−7.

For the driven cavity problem, a steady laminar �ow exists for Re¡3000. In this section, we
give calculations of the stability of numerical calculation of the steady state for a representative
Reynolds number 350.
We consider the matrix formulation, described in Section 2, of the system composed by

the vorticity equation with the Poisson’s equation. The velocity �eld (ũ; ṽ) introduced in the
vorticity equation is the numerical approximation velocity �eld to (u; v) that we obtain from
numerical solution of the cavity �ow problem.
When we use the second- and third-order discretization for the vorticity equation and for

Thom, Alessio and Dennis and Briley vorticity boundary discretizations at Reynolds number
350, the result of the eigenvalues for the matrix formulation is described in Figure 5. We have
used the second-order Poisson’s discretization. Nevertheless if instead we use the fourth-order
Poisson’s discretization the stability results are very similar to the ones presented in Figure 5.
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Table IV. Calculation of vorticity at the centre, !(0:5; 0:5), for four mesh resolutions together with
extrapolated convergence rate for varying vorticity boundary condition, convection–di�usion and stream

function-vorticity equation discretization.

!(0:5; 0:5) reference = 1:174412 Convergence
Boundary Poisson
method Convection–di�usion equation 32× 32 64× 64 128× 128 256× 256 32–64 64–128 128–256

Thom Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

1:063036
1:087573
1:106146
1:131313

1:146349
1:153773
1:157270
1:164780

1:166998
1:169074
1:168431
1:170514

1:172601
1:173216
1:173058
1:173611

1:99
2:07
1:99
2:16

1:92
1:95
1:52
1:31

2:03
2:16
2:14
2:28

Woods Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

1:081257
1:106249
1:123390
1:148942

1:149183
1:156676
1:160001
1:167596

1:167304
1:169390
1:168729
1:170825

1:172618
1:173229
1:173070
1:173624

1:88
1:94
1:82
1:90

1:83
1:82
1:34
0:93

1:99
2:09
2:08
2:19

Jensen Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

1:081077
1:105883
1:122976
1:148631

1:149267
1:156949
1:160052
1:167852

1:167335
1:169465
1:168758
1:170904

1:172620
1:173245
1:173078
1:173040

1:89
1:97
1:84
1:97

1:83
1:82
1:34
0:90

1:98
2:08
2:08
1:35

d’Allesio Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

1:063547
1:088474
1:106677
1:132078

1:140899
1:148362
1:151932
1:159515

1:163966
1:166048
1:165426
1:167520

1:171173
1:171759
1:171635
1:172189

1:73
1:72
1:59
1:51

1:68
1:64
1:32
1:11

1:69
1:66
1:69
1:63

Briley Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

1:081195
1:106169
1:122568
1:148513

1:148418
1:156240
1:159183
1:167140

1:167115
1:169278
1:168539
1:170713

1:172590
1:173146
1:173038
1:173605

1:84
1:91
1:77
1:83

1:83
1:82
1:37
0:98

2:00
2:02
2:10
2:20

The reference value given by Botella and Peyret [30] is !(0:5; 0:5)=1:174412. Numerical parameters are: Re=100,
�t=0:0005, multigrid residual less than 10−7.

5.2. Accuracy

There are well established calculations of the driven cavity problem which provide refer-
ence values for the solution at some points in the �ow. We use those from Reference [30]
which were computed using a high-order spectral method. In particular, we examine the case
Re=100 and the value of the vorticity in the middle of the moving wall and the vorticity
and stream function in the centre of the cavity. The results were considered converged for a
variation of the vorticity between time steps of order 10−21, that is the limit of double preci-
sion accuracy. We have used four meshes, 32× 32, 64× 64, 128× 128 and 256× 256. Then
results from pairs of meshes were extrapolated to give an estimate of the convergence rate as
the mesh size decreases. The results are given in Tables III–V. For most of the calculations
the convergence rate is essentially quadratic. The exception is the condition from d’Allesion
and Dennis where the convergence rate seems closer to 1.5. It is apparent that the choice of
discretization of the Poisson equation makes no di�erence, the conditions which gave quar-
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Table V. Calculation of streamfunction at centre,  (0:5; 0:5), for four mesh resolutions together with
extrapolated convergence rate for varying vorticity boundary condition, convection–di�usion and stream

function-vorticity equation discretization.

 (0:5; 0:5) reference = 0:0665474 Convergence
Boundary Poisson
method Convection–di�usion equation 32× 32 64× 64 128× 128 256× 256 32–64 64–128 128–256

Thom Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

0:062828
0:063660
0:064146
0:064976

0:065634
0:065884
0:065960
0:066215

0:066314
0:066385
0:066355
0:066426

0:066490
0:066510
0:066503
0:066522

2:03
2:12
2:03
2:24

1:97
2:03
1:61
1:45

2:02
2:13
2:13
2:27

Woods Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

0:063479
0:064325
0:064746
0:065596

0:065729
0:065982
0:066051
0:066306

0:066322
0:066393
0:066363
0:066434

0:066490
0:066510
0:066503
0:066522

1:91
1:97
1:86
1:98

1:86
1:88
1:43
1:09

1:96
2:04
2:05
2:15

Jensen Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

0:063483
0:064322
0:064742
0:065595

0:065733
0:065993
0:066054
0:066317

0:066324
0:066396
0:066364
0:066437

0:066490
0:066510
0:066503
0:066523

1:91
2:01
1:87
2:05

1:86
1:88
1:43
1:06

1:96
2:03
2:05
2:15

d’Allesio Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

0:062720
0:063566
0:064039
0:064885

0:065385
0:065636
0:065717
0:065972

0:066183
0:066254
0:066226
0:066297

0:066429
0:066450
0:066443
0:066462

1:72
1:71
1:59
1:53

1:68
1:63
1:37
1:20

1:63
1:58
1:62
1:55

Briley Lax–Wendro�
Quickest

O(h2)
O(h4)
O(h2)
O(h4)

0:063483
0:064328
0:064722
0:065587

0:065701
0:065966
0:066021
0:066290

0:066315
0:066389
0:066356
0:066430

0:066488
0:066508
0:066502
0:066521

1:86
1:93
1:79
1:90

1:87
1:88
1:46
1:14

1:98
2:00
2:07
2:16

Numerical parameters are: Re=100, �t=0:0005, multigrid residual less than 10−7.

tic convergence in the previous section are now only quadratic so that the conditions for
Bramble–Hubbard theory to allow global convergence to be determined by discretization in
the interior do not hold (recall that Quickest should be close to third-order accurate in space
so we might have hoped to �nd Quickest plus quartic discretization of the Poisson equation
giving close to third-order convergence). As no global exact solution exists, convergence is
considered only at three point values.

6. CONCLUSION

We have developed a global iteration matrix formulation for the stream-function vorticity
equations and applied it to two driven cavity problems to examine the e�ect on numerical
stability of di�erent numerical vorticity boundary conditions. The main conclusion is that
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the various ways of treating the boundary vorticity make little di�erence to stability which
is determined mainly by the discretization of the advection–di�usion vorticity equation. We
have observed in passing some results for accuracy of the calculations and observe that there
are situations where discretization errors near the boundary do not propagate into the interior
and do not a�ect the global accuracy, as given by Bramble–Hubbard theory but for the most
part, in solution of practical problems using time marching schemes, it is di�cult to exceed
second-order convergence.

ACKNOWLEDGEMENTS

ES was partially supported by Centro de Matem�atica da Universidade de Coimbra.

REFERENCES

1. Ottino J. The Kinematics of Mixing, Stretching, Chaos and Transport. Cambridge University Press: Cambridge,
1989.

2. Thom A. The �ow past a circular cylinders at low speeds. Proceedings of the Royal Society of London 1933;
A141:651–666.

3. Roache P. Computational Fluid Dynamics. Hermosa, 1972.
4. Peyret R, Taylor T. Computational Methods for Fluid Flow. Springer: Berlin, 1986.
5. Orszag S, Israeli M. Numerical simulation of viscous incompressible �ows. Annual Review of Fluid Mechanics
1974; 6:281–318.

6. Gresho P. Some interesting issues in incompressible �uid dynamics, both in the continuum and in numerical
simulation. Advances in Applied Mechanics 1992; 28:45–140.

7. Hou T, Wetton B. Convergence of a �nite di�erence scheme for the Navier–Stokes equations using vorticity
boundary conditions. SIAM Journal on Numerical Analysis 1992; 29:615–639.

8. Weinan E, Liu J. Essentially compact schemes for unsteady viscous incompressible �ows. Journal of
Computational Physics 1996; 126:122–138.

9. Wang C, Liu J. Analysis of �nite di�erence schemes for unsteady Navier–Stokes equations in vorticity
formulation. Numerische Mathematik 2002; 91:543–576.

10. Weinan E, Liu J. Vorticity boundary condition and related issues for �nite di�erence schemes. Journal of
Computational Physics 1996; 124:368–382.

11. Napolitano M, Pascazio G, Quartapelle L. A review of vorticity conditions in the numerical solution of the
! −  equations. Computer and Fluids 1999; 28:139–185.

12. Li Z, Wang C. A fast �nite di�erence method for solving Navier–Stokes equations on irregular domains.
Communications in Mathematical Sciences 2003; 1:180–196.

13. Spotz W. Accuracy and performance of numerical wall boundary conditions for steady, 2D incompressible
stream function vorticity. International Journal for Numerical Methods in Fluids 1998; 28:737–757.

14. Sousa E, Sobey I. Numerical stability of unsteady stream-function vorticity calculations. Communications in
Numerical Methods in Engineering 2003; 19:407–419.

15. Richtmyer R, Morton K. Di�erence Methods for Initial-value Problems. Wiley: New York, 1967.
16. Sousa E, Sobey I. A family of �nite di�erence schemes for the convection–di�usion equation in two dimensions.

Enumath 2001 Numerical Mathematics and Advanced Applications. Springer: Berlin, 2002; 179–188.
17. Iserles A. A First Course in the Numerical Analysis of Di�erential Equations. Cambridge University Press:

Cambridge, 1996.
18. Woods L. A note on the numerical solution of a fourth order di�erential equation. Aeronautical Quarterly

1954; 5:176–182.
19. Jensen V. Viscous �ow round a sphere at low Reynolds numbers. Proceedings of the Royal Society 1959;

A294:346–366.
20. d’Alessio S, Dennis S. A vorticity model for viscous �ow past a cylinder. Computers and Fluids 1994;

23:279–293.
21. Briley W. A numerical study of laminar separation bubbles using Navier–Stokes equations. Journal of Fluid

Mechanics 1971; 47:713–736.
22. Turkel E. Symmetric hyperbolic di�erence schemes and matrix problems. Linear Algebra and its Applications

1977; 16:109–129.
23. Collatz L. Numerische behandlung von di�erentialgleichungen. Springer: Berlin, 1951.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:371–393



EFFECT OF BOUNDARY VORTICITY DISCRETIZATION 393

24. Bramble J, Hubbard B. New monotone type approximations for elliptic problems. Mathematics of Computation
1964; 18:349–367.

25. Benjamin A, Denny V. On the convergence of numerical solutions for 2-D �ows in a cavity at large Re. Journal
of Computational Physics 1979; 33:340–358.

26. Schreiber R, Keller H. Driven cavity �ows by e�cient numerical techniques. Journal of Computational Physics
1983; 49:310–333.

27. Shen J. Hopf bifurcation of the unsteady regularized driven cavity �ow. Journal of Computational Physics
1991; 95:228–245.

28. Bruneau C, Jouron C. A new upwind scheme for the driven cavity �ow. Comptes Rendus des Academie des
Sciences 1988; 307:359–362.

29. Goodrich J, Gustafson K, Halasi K. Hopf bifurcation in the driven cavity. Journal of Computational Physics
1990; 90:219–261.

30. Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity �ow. Computers and Fluids 1998;
27:421–433.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:371–393


